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Systematic methods of the solution of linear Diophantine systems of equations and
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algorithm is described, which is applicable to large systems with large solutions. Math-
ematica implementations are tested and compared in important chemical examples.
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1. Introduction

In chemistry reactions or steps are called elementary if they start from at
most two reactant species. Very often only overall reactions are known, where the
number of reactants is greater than 2. It is a general view that only elementary
reactions take place in nature and the overall reactions are aggregated results of
some elementary reactions. The chemical equation of an overall reaction gives a
higher-level description only, since it does not contain any information on the
elementary reactions of the chemical mechanism. The aim of decomposing over-
all reactions is to systematically calculate the sets of elementary steps that may
add up to the given reaction. One of the most successfully investigated class of
reactions is the combustion processes of hydrocarbons [1], with the well-known
application in petrol chemistry.
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In chemistry the different kinds of materials involved in a chemical reaction
including ions and electrons are referred to as species.

First the set of species that might be produced in the mechanism must be
selected – not only the products but every possible intermediate species as well.
(A species is called intermediate if it is not included in the overall reaction.)
Then every elementary step that might take place among these species must be
determined. The latter task is usually considered as a purely chemical problem.
In fact, as it is discussed in section 4, this part of the problem can also be
automated, moreover, with a well-established algorithmic approach significantly
higher number of elementary reactions can be produced than it would be possi-
ble by chemical “instinct” only.

The third step is the decomposition of the overall reaction into the elemen-
tary steps in as many ways as possible. The total number of decompositions can
be so high that not all of them can be generated. The last step is a filtering pro-
cess to rule out the chemically infeasible decompositions. This last step is based
on a graph-indexing technique. But the previous steps require the solution of lin-
ear systems of Diophantine equations over nonnegative integers.

The algorithmic problems encountered during the decompositioning process
are usually NP-hard if not of exponential space complexity. Linear Diophantine
equations are discussed by many authors of the field (see e.g. [2–5]), but the algo-
rithms described in these works are mostly designed to decide the solvability of a
system (over integers), without generating its solutions. In the present paper not
only an optimal solution is required, but all nonnegative solutions or all minimal
nonnegative solutions are of interest from the chemical point of view.

Previous decompositions of chemical processes are mostly based on ad hoc
solutions: highly relying on special properties of the overall reaction in question,
and the used thermodynamical data usually are not available for inorganic reac-
tions. Our goal was to design and implement mathematical algorithms that sup-
port the automated decomposition of reactions even if no thermodynamical data
is available. Certainly, these data, if available, can be taken into account during
the analysis of a complex reaction right after the decomposition process.

The structure of the paper is this: the problem of decomposing overall reac-
tions is formulated in section 2. Our investigation of linear Diophantine systems
is presented in section 3. Decomposition generation and filtering is discussed in
section 5. Sections 4.1 and 5.2 shows an example for the decomposition of a
complex inorganic reaction of high importance, namely the permanganate/oxa-
lic acid reaction.

2. Overall and elementary reactions

The solution starts with the selection of the species participating in
the mechanism. This information must come from chemical experiments and
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measurements. Here only at most a few dozens of species are taken into
consideration instead of listing hundreds (or thousands) of elementary reactions
that are essential for a valid chemical model.

Elementary reactions are chemical reactions with at most two reactant
species. Before the decomposition of the given overall reaction takes place, all
possible elementary steps must be determined that might take place during the
reaction. The usual approach to this problem is that it essentially needs the
knowledge of chemical experts, thus it is not a mathematical problem. This
approach leads to the fact that sometimes the number of elementary steps taken
into consideration hardly exceeds the number of the species (see e.g. [6]).

One restriction what is used in general is the law of atomic and charge bal-
ance [7, chapter 3]. Suppose that species are made of k different atoms. Assign
a k + 1 dimensional vector to each species where the first k components are the
quantities of the different atomic constituents and the electric charge is the last
component. This is the only component of the vectors, which might be negative.
This atomic structure of the species is usually described by the atomic matrix,
an example of which is table 1. Then the weighted sum of the vectors assigned
to the species on the two sides of a reaction are equal. More formally, assume
that in a chemical reaction R1, . . . , Rn are the reactants and P1, . . . , Pm are the
products. Then the chemical reaction is usually described in the form:

α1R1 + · · · + αnRn → β1P1 + · · · + βmPm,

where the constants α1, . . . , αn, β1, . . . , βm, the stoichiometric coefficients, are
positive integers. Suppose that the reactants and the products are represented by
the k+1 dimensional integer vectors r1, . . . , rn and p1, . . . , pm, where the compo-
nents are denoted by rij , and pij , respectively. Then the equation of the reaction
in a linear algebraic form is

n∑

j=1

αj rj =
m∑

i=1

βipi .

Using this notation, a reaction is elementary if
∑n

i=1 αi � 2.
The elementary reactions can be generated by expressing in every possible way

the atomic vector of each species and the double of these vectors and the sum of
the vectors of any two species as a linear combination of the atomic vectors of the
other species with nonnegative integer coefficients. This is equivalent to the solution
of several linear Diophantine equation systems over nonnegative integers.

The generation of the decompositions of the overall reaction is similar to
the previous step. Let s be the number of species. An s-dimensional vector is
assigned to each reaction. The absolute value of the ith (1 � i � s) component
of such a vector is the coefficient of the ith species in the reaction. If a species is
a reactant, then the component is negative, if it is a product then the component
is positive. A similar vector is assigned to the overall reaction.
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Table 1
The species taking part in the permanganate/oxalic acid reaction.

C H Mn O c

H2C2O4 2 2 0 4 0
HC2O−

4 2 1 0 4 −1
H+ 0 1 0 0 1
C2O2−

4 2 0 0 4 −2
Mn2+ 0 0 1 0 2
MnC2O4 2 0 1 4 0
MnO−

4 0 0 1 4 −1
MnO2 0 0 1 2 0
Mn3+ 0 0 1 0 3
CO2 1 0 0 2 0
H2O 0 2 0 1 0
[MnO2, H2C2O4] 2 2 1 6 0
CO−

2 1 0 0 2 −1
[Mn(C2O4)]+ 2 0 1 4 1
[Mn(C2O4)2]− 4 0 1 8 −1
[MnC2O4, MnO−

4 , H+] 2 1 2 8 0
[MnC2O2+

4 , MnO−
3 ]+ 2 0 2 7 1

[MnC2O2+
4 , MnO−

3 , H+]2+ 2 1 2 7 2
[H+, MnO2, H2C2O4]+ 2 3 1 6 1

Then our task is to express in every possible way the vector of the overall
reaction as the linear combination of the vectors assigned to the elementary
steps with nonnegative integer coefficients.

Let t be the number of elementary reactions. Then more formally the gen-
eration of the decompositions is equivalent to the generation of the nonnegative
integer solutions of a

�x = w

linear Diophantine equation system, where the stoichiometric matrix � is an s×t

matrix, whose columns are the stoichiometric coefficients of the elementary reac-
tions and w is the vector of the overall reaction.

This equation system differs significantly from those in the previous step
determining the elementary reactions. It is considerably larger than those and
typically has an infinite number of solutions while the former equations do not.

3. Linear systems of Diophantine equations

The symbols N, Z and Q
+
0 denote the set of nonnegative integer, arbi-

trary integer and nonnegative rational numbers, respectively. Vectors and their
co-ordinates are denoted by bold and italic letters, respectively. If x ∈ Z

n,



D. Papp and B. Vizvári / Effective solution of linear Diophantine equation 19

‖x‖1 := ∑n
i=1 |xi | is its length, ‖x‖∞ := max |xi | is its height, and ‖x‖ is its

Euclidean norm. The scalar product of v and w is denoted by 〈v, w〉. We use the
relation v � w if and only if ∀i : vi � wi , and with this notation v � w if and only
if v � w but v 	= w. The null vector of Z

n will be denoted by 0n or simply 0, if no
ambiguity arises. The elements of the canonical basis of Z

n are e(1), . . . , e(n).
The problem to solve is the following. Let b ∈ Z

d and {v1, v2, . . . , vn} (vi ∈
Z

d) be fixed vectors. We have to find the n-tuples (a1, a2, . . . , an) ∈ N
n such that

n∑

i=1

aivi = b. (1)

holds. The set of solutions will be denoted by M, the set of minimal solutions
with respect to � is M′. If the system (1) is inhomogeneous, i.e. b 	= 0, then
the set of minimal solutions of the corresponding homogeneous system will be
denoted by M0.

It is worth noting that the problem is NP-hard, even if d = 1, because then
it is equivalent to the NP-hard subset sum problem [8, section 9.4]. Even the
decision if such a system has at least one integer solution is NP-complete.

Algorithms of generating the nonnegative solutions of (1) do not appear
even in the state-of-the-art works on Diophantine equations, such as [4,5]. The
aim of the integer programming methods is to find an optimal solution, i.e., even
these methods do not generate all feasible solutions. Until recently the widely
used mathematical software packages like Mathematica or Maple also lacked of
functions that can solve such equations. (In version 5, though, Mathematica has
extended its function Reduce so it solves Diophantine equations over naturals
as well as integers. This function, however, performs poorly with large systems.)

A naive algorithm, e.g., a greedy-type depth-first search or breadth-first
search procedure, cannot be applied here. First of all, the set of solutions may
be infinite because of the presence of both positive and negative coefficients. Sec-
ondly, such a procedure might not terminate even if the set of solutions is finite.
Another problem is that the applicability of the procedure depends on the order
of the vectors vi ’s. For example, let n = d = 2, v1 = (1, 0)T, v2 = (−1, 1)T. For
any vector b equation (1) has at most one solution. Using the vector v1 as many
times as possible, the vector v2 can increase the infeasibility in one component
and decrease in the other one. If the vectors are used in the opposite order this
may not happen and the search ends up in an infinite cycle. The naive algorithm
can be used only if the termination of the procedure is a priori ensured.

3.1. Algorithm of Contejean and Devie

In this subsection an improved version of the algorithm of Contejean and
Devie, proposed in [2], is discussed. This algorithm is to find the minimal
solutions of a homogeneous linear Diophantine equation. Equation (1) has finite
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number of solutions, if and only if every solution is minimal. Thus it is reason-
able to search for M′ only, instead of M.

The algorithm of Contejean and Devie is a clever modification of the trivial
infinite procedure of finding the minimal solutions by breadth-first search such
that this new procedure is not only faster and more space-efficient, but it also
terminates. The basic breadth-first procedure to solve the homogeneous problem
is the following:

1. [init] A := {0n}, M′ := ∅.

2. [breadth-first search] A := {a + e(k) | a ∈ A, 1 � k � n}
3. [new minimal results] M′ := M′ ∪ {a ∈ A | a is a solution of (1)}
4. [unnecessary branches] A := A \ {a | ∃m ∈ M′ : m � a}
5. [test] If A = ∅, stop. Otherwise go to step 2.

This procedure may never terminate. The modification proposed in [3] is
the following: in step 2 the vector a is increased by e(k) only if the scalar prod-
uct 〈∑n

i=1 aivi , vk〉 is negative. Thus, in the homogeneous Contejean–Devie algo-
rithm step 2 is the following:

2. [modified BFS step] A := {a+e(k) | a ∈ A, 1 � k � n, 〈∑n
i=1 aivi , vk〉 < 0}

The number of steps can be reduced even more, provided that an upper
bound on the length of the minimal solutions is known.

Theorem 1. To obtain the minimal solutions of length not greater than m only,
the homogeneous Contejean–Devie algorithm can be modified as follows: in step
2 the vector a can be increased by e(k) only if m > ‖a‖1 and

〈 n∑

i=1

aivi , vk

〉
� −‖ ∑n

i=1 aivi‖2

m − ‖a‖1
(2)

Proof. See the Appendix.

Remark. If m→∞, then the statement of the theorem is identical to the quoted
condition formulated in [2]. If one has a good bound of m then a great number
of steps can be saved by using the stronger condition. Unfortunately, the proof
of the original theorem in [2] does not imply any upper bound for the length of
the minimal solutions. In the case of the decomposition of overall reactions even
chemical evidences can be used.

It is easy to adopt the algorithm to solve inhomogeneous systems. The vec-
tor −b should be added to the vectors on the left-hand side, i.e. let vn+1 = −b,
and the null vector in the first step should be replaced by the (n+1)-dimensional
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vector (0, . . . , 0︸ ︷︷ ︸
n

, 1). Finally, the last component of the elements of M′ must be

omitted.

3.2. Upper bounds on the lengths of minimal solutions

In his paper [9] Domenjoud describes an algorithm, that finds the minimal
solutions of (1) in a way that leads to an upper bound on the length of the min-
imal solutions. The algorithm uses an algebraic approach and requires the com-
putation of the rth minors of the matrix of the system (where r is the rank of
the matrix), which is too much computational effort for larger systems.

Pottier’s paper [10] is a complete summary of the best upper bounds
known, including those derived from Domenjoud’s results. Its main theorem is
the following:

Theorem 2. Denote the matrix of the homogeneous system by A. Let r =
rank(A), Dr and D′

r be the largest absolute value of the minors, of order r of
A, and of order r + 1 of

(1···1
A

)
, respectively. The columns of A are denoted by

v1, . . . , vn. Then the following inequalities hold for every minimal solution m ∈
M′ of the homogeneous equation (1):

‖m‖1 � (1 + max
i

‖vi‖)r , (3)

‖m‖1 � (n − r)D′
r , (4)

‖m‖∞ � (n − r)

(‖A‖1

r

)r

, (5)

‖m‖∞ � (n − r)Dr. (6)

Obviously (6) is sharper than (5) (in fact, (5) is a consequence of (6)), but
the bounds on the right-hand side of (4) and (6) are not computable in prac-
tice. For larger systems only the first and the third bounds are applicable. All
these bounds are sharp in some sense. (See [10] for details.) In practical chemi-
cal examples bounds coming from chemical conditions are much more restrictive
than these bounds as only decompositions having less than, say, a few hundred
steps are of interest.

It is interesting to note, that while the last three bounds come from an algo-
rithm that finds the solutions, the proof of the first bound does not involve algo-
rithmic techniques and is not closely related to any algorithm that solves (1).
However, these bounds can accelerate the Contejean–Devie and the LP-based
enumerative algorithms, which do not imply directly any upper bound on the
solutions.
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3.3. LP relaxation

The algorithm presented in this subsection is based on the LP relaxation
of the problem. The algorithm works as follows: the general (parameterized)
solution of the equation (1) is determined over real numbers. Then taking into
account the nonnegativity constraints the integer solutions of the new inequality
system are determined.

It is easy to see that the following lemma is true.

Lemma . Let r= rank(A). The vector space of the solutions of a homoge-
neous system of equations has a basis {b1, b2, . . . , br} such that the matrix
(b1, b2, . . . , br ) has a r ×r diagonal submatrix containing positive integers in the
diagonal.

If one particular solution of the inhomogeneous equation is p = (p1, p2, . . . ,

pn), (pi ∈ Q), then the general solution of the inhomogeneous equation can be
written in the form

a = p + b1x1 + · · · + brxr (xi ∈ R).

Those vectors x = (x1, x2, . . . , xk) are to be determined, for which each compo-
nent of a is a nonnegative integer. Assume that βi ∈ Z

+ is the positive compo-
nent of bi in the diagonal mentioned in the lemma. Then the ith component of
a is pi + βixi , thus xi must be a rational number of the form

(t − pi)/βi, with some t ∈ Z.

If lower and upper bounds on the components of x are known, then only
a finite number of possible solutions remain to check. The bounds can be deter-
mined by linear programming: the variables xi need to be minimized and maxi-
mized subject to the system of inequalities a � 0 as linear constraints. The total
number of the vectors x satisfying the bounds can be still to high to enumerate
all of them explicitly. Therefore first the two bounds are determined for one of
the variables only, say for x1. Then for every possible value of x1 the two bounds
are determined for another variable, etc.

This procedure can be implemented in many different ways. The easiest (but
not necessarily the most efficient) way is bounding each variable from below and
above and using enumeration instead of repeated bounding. Another straightfor-
ward method is using linear programming twice in every iteration. Enumeration
can be improved using the method of Land and Doig (see [11, section 3.6]). The
main point of this method is that if x1, . . . , xi−1 are fixed and the lower an upper
bounds of xi+1 are considered as the function of xi then the sign of the first
difference of the bounds can change only once each. Furthermore if by chang-
ing xi , i.e., by increasing or decreasing xi , the set of feasible solutions becomes
empty then it remains empty if xi is changed further on in the same direction.
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It follows from the integrality of the coefficients that the set of integer fea-
sible solutions is unbounded only if the set of feasible solutions of the LP relax-
ation is unbounded, too. If the set of solutions is unbounded, then we can still
use the LP-based enumerative algorithm to obtain every solution not longer than
some given constant. If this constant is determined by one of the bounds pre-
sented in section 3.2, then these solutions include every minimal solution.

This type of algorithms are called LP-based enumerative method.

4. Determination of elementary reactions

In this section three different applications of the theory discussed so far are
presented. All of them are well-known problems in chemistry.

4.1. Examples

4.1.1. Permanganate/oxalic acid reaction [12]
This reaction has been investigated since 1864, but its decompositions are

still unknown. The mechanism includes 19 species, which consist of four ele-
ments: manganese, hydrogen, coal and oxygen. The species are listed in table 1,
the overall reaction is the following:

2MnO−
4 + 6H+ + 5H2C2O4 → 2Mn2+ + 8H2O + 10CO2 .

To obtain every possible elementary step it is required to represent the vec-
tor of each species, and the sum of any two (not necessarily different) species as
the nonnegative integral linear combination of the others in every possible way.
Altogether there are 209 systems of equations to solve. Although we found the
Contejean–Devie algorithm competitive in some of these equations, but in many

Table 2
The species of the air pollution example.

H2 CH4 C2H2 C2H4 C2H6 C3H4 C3H6 C4H2

O2 H2O H2O2 CO CO2 CH2O CH2CO C
H CH CH2 CH2(S) CH3 C2H C2H3 C2H5

C3H2 H2CCCH H2CCCCH O OH HO2 HCO CH3O
CH2OH HCCO CH2HCO N2 CN HCN N NH
NO HNO NH2 H2NO NCO N2O NO2 N2H2

HOCN H2CN NNH NH3 N2H3 C2N2 HNCO NO3

S SH H2S SO SO2 SO3 HSO2 HOSO
HOSO2 SN S2 CS COS HSNO HSO HOS
HSOH H2SO HOSHO HS2 H2S2 CS2 HSOO H2SO4

Species containing sulfur are below the dashed line.
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Table 3
Species in the oxalate–persulfate–silver oscillator.

Ag+ Ag2+ H+ SO−
4

SO2−
4 S2O2−

8 C2O2−
4 Ag(C2O4)

−

OH H2O CO−
2 O2

HO2 H2O2 O2CO−
2 CO2

cases, when the length of a few solutions exceeded four, i.e., there are at least five
products in the reaction, the LP-based enumerative algorithm was significantly
faster. In the end, the search for possible elementary reactions resulted in 1022
steps, which were obtained in 52 s. (All timing data relate to a PC with AMD
Athlon XP 1666 MHz, 121.8 MIOps CPU, 768 MB RAM, running Windows XP
and Mathematica 5.0)

4.1.2. Air pollution
For a current research at the Department of Fuel and Energy at University

of Leeds we had to generate the list of those elementary reactions consisted of
the species given in table 2 that contain sulfur.

In this case we had 1668 equations with 78 or 79 variables. The number of
solutions was above 400,000, which was too high for further investigations. So
the model was changed such that only steps with at most three products were
taken into account.

The modified Contejean–Devie algorithm can be used directly to obtain
every such solution, and since in this case the length of the solutions is very
small, this algorithm is expected to be very fast. On the other hand the use of
the LP-based enumerative algorithm is also reasonable. In this particular exam-
ple the improved Contejean–Devie algorithm turned out to be the fastest one,
this is due to the very limited size of the solutions. The original Contejean–De-
vie algorithm performs significantly worse in the example.

4.1.3. Oxalate-persulfate-silver oscillator [13]
This mechanism presented in [13] consists of exactly the 16 species shown

in table 3. The 152 systems derived have 89 solutions. Our implementation of
the Contejean–Devie algorithm needed about two minutes to find each solution,
while the LP-based enumerative algorithm was ready in 2 s. In this very simple
problem the naive algorithm works almost as fast as the LP-based enumerative
algorithm.

As all the three examples show that in general the algorithm of Contejean
and Devie is far less efficient than the LP-based enumerative algorithm. The for-
mer is only recommended when both the size of the problem and the length of
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Table 4
Timing measurements: generating elementary reactions.

Equations/
Problem No. of systems variables Algorithm used CPU time (s)

Permanganate/ naive BFS 163.04
oxalic acid 209 5/17 Contejean–Devie 1589.48

LP-based enumerative 51.66

Air pollution 1668 5/78 naive BFS >8 h.
improved Contejean–Devie 13429.5
original Contejean–Devie >8 h.
LP-based enumerative >8 h.

Oxalate / 152 6/14 naive BFS 3.10
persulfate / Contejean–Devie 116.67
silver LP-based enumerative 2.00

The number of variables is one more in those systems which yield the reactions with one
reactant.

the solutions are very small. Our modification of this algorithm proved to be a
significant improvement.

We used the LinearProgramming function of Mathematica 5 to solve
the linear programming instances created during the LP-based enumerative
algorithm. Due to several bugs in this function its most efficient methods may
malfunction in some (rare) cases. If it is parameterized to use the correctly imple-
mented simplex method, the efficiency of our algorithm decreases dramatically.
The table above shows the timing data of the fastest version of our implementa-
tion (table 4).

5. Decomposition of overall reactions

5.1. Reduction of the searching space

A complex overall reaction might have a large number of decompositions.
Therefore it is important to reduce the search space to enhance the efficiency of
the algorithms.

5.1.1. Reactions that take part in every decomposition
There are some elementary steps which must take part in every decomposi-

tion. These steps can be subtracted from the overall reaction, and the length of
the solutions can be decreased. These elementary reactions can be selected via
linear programming.

Let v1, v2, . . . , vn, and x1, . . . , xn be the vectors of the elementary reactions,
and their multiplicities, respectively. The vector of the overall reaction is denoted
by b. Then the linear program to solve while investigating the kth reaction is the
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following:

min xk;
∑

i

xivi = b, ∀ i : xi � 0.

The minimum obtained in the kth linear program is obviously a lower bound
on the multiplicity of the kth reaction. The main advantage of this preprocessing
procedure is its speed.

5.1.2. Elimination of never used reactions
Every decomposition method becomes faster if those elementary reactions

are eliminated, which cannot take part in any decomposition. Three methods are
presented for this purpose in this subsection.

Elimination by chemical expert. As a first filter, we should rule out every ele-
mentary step which are chemically impossible, e.g., because they disobey some
thermodynamical law. In different cases different rules might be applied.

LP-based solution. The LP-based method that was used to bound the multi-
plicities of the reactions can be used again, but we can use it in a more sophis-
ticated way, as proposed in [12].

1. [init] M := ∅
2. [test] Find an arbitrary (a1, . . . , an), ai ∈ Q

+
0 satisfying (1) such that

{i | ai > 0} 	⊂ M. If there is no such solution, stop.

3. [jump] M = M ∪ {i | ai > 0}, and go to step 2.

Step 2 is carried out by the solution of the following linear programming
problem:

min cTx;
n∑

i=1

xivi = b, cTx � 1, ∀ i : xi � 0, (7)

where the ith component of the n dimensional vector c is 1 if i 	∈ M and 0 oth-
erwise.

It is clear, that the procedure terminates after a finite number of steps,
because in every iteration it either stops or decreases the number of indices
not included in set M, by at least one. Those vectors, which remain unmarked
after termination cannot take part in any decomposition. It is worth noting, that
the LP relaxation problem of the second step also has chemical meaning. The
decomposition with nonnegative rational coefficients yields a decomposition of a
multiple of the overall reaction. During further chemical investigations we might
find these decompositions useful.
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In step 2 any other objective function can be used for which the minimum
exists. But the conditions must be the same to find a decomposition including at
least one unmarked elementary reaction. Different objective functions can give
different decompositions. If vector c has only positive components, the algorithm
determines only minimal decompositions.

Volpert indices. The previous algorithm uses only mathematical reasoning, but
does not take chemical aspects into consideration. A decomposition is chemically
infeasible if any of its species has zero concentration during the whole reaction.
(Concentrations are determined via solving differential equations associated with
the decompositions.) According to a theorem of Volpert a species has a constant
zero concentration if and only if it gets infinite index in the following procedure
[14]: first, the initial species get the index zero. Then the index of a reaction is the
maximum of the indices of its reactants, while the index of a not initial species is
greater by one than the minimum of the indices of those reactions which produce
the species in question. (The minimum of the empty set is declared infinity.) More
formally, let the set of species M and the set of reactions R be given and denote
the set of initial species by M0, finally let R(r) and P(r) be the reactants and the
products of the reaction r. Then the indexing algorithm is the following.

1. [init] R0 := {r ∈ R | R(r) ⊂ M0}, i := 1.

2. [species indices] Mi := ⋃i−1
j=0

⋃
r∈Rj

P (r) \ ⋃i−1
j=0 Mj

3. [reaction indices] Ri := {r ∈ R | R(r) ⊂ ∪i
j=0Mj } \ ⋃i−1

j=0 Rj .

4. [cycle] If Ri = ∅, go to step 5. Otherwise i := i + 1 and go to step 2.

5. [end] M∞ := M \ ⋃i
j=0 Mj, R∞ := R \ ⋃i

j=0 Rj .

The Volpert-index of a species or a reaction is j if it is contained in the set Mj

or Rj .
Although this procedure is used to check the chemical feasibility of the

decompositions (see e.g. [12,14]) with a slight modification it can also be used in
preprocessing. One can consider all species and all elementary reactions as a sin-
gle decomposition. After indexing it, the reactions and species with infinite index
cannot take part in any decomposition.

Volpert-indexing is extremely efficient as both of its space and time com-
plexity is linear.

5.2. Example

5.2.1. Permanganate/oxalic acid reaction [12].
In the previous section, 1022 elementary reactions have been generated that

may take place during the overall reaction. Many of these steps are chemically
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infeasible. Using chemical evidence 349 reactions have been omitted. The remain-
ing 673 steps were investigated using the methods described in section 5.1.

First we found, that two reactions must take part in every decomposition.
The step H2C2O4 + MnO2→ [MnO2, H2C2O4] takes place at least four times,
and similarly the step 2 CO−

2 →C2O2−
4 takes place at least once. With this obser-

vation we can rearrange the system of equations so the length of the solutions
are decreased by 5. This step took about 2 min CPU time.

The LP-based method were applied with three different objective functions
to determine the elementary reactions which can be eliminated. The first one,
exactly formulated as in (7) found 314 steps that does not take part in any
decompositions. The number of iterations were 313. As it was expected less num-
ber of iterations (exactly 280) was required with the objective function (1 − c)Tx.
The third variation was the constant zero as objective function. This step needed
about 5–7 min depending on the objective function.

The remaining reactions were indexed using Volpert’s algorithm with differ-
ent set of initial species. Only 297 reactions and only 16 species got finite index
using either the set of 5 initial species suggested in [12] or the set consisted of
every non-complex species. In fact, we got the same reaction set after indexing
the original set of 673 reactions. This step took less than a second in each case.

In the determination of the decompositions only the remaining 297 elemen-
tary steps were used. To accelerate the search linear programming was applied to
obtain bound on the length of the smallest decomposition. The objective func-
tion was the sum of the coefficients of the elementary steps and as a by-product
the following decomposition was obtained:

4× H2C2O4 + MnO2 → [MnO2, H2C2O4]
2× H2C2O4 + [MnO2, H2C2O4] → 2CO2 + 2H2O + MnC2O4

1× H+ + HC2O−
4 → H2C2O4

1× C2O2−
4 + H+ → HC2O−

4
2× MnC2O4 + MnO−

4 → CO−
2 + CO2 + 2MnO2

1× 2CO−
2 → C2O2−

4
2× H+ + [MnO2, H2C2O4] → [H+, MnO2, H2C2O4]+

2× H+ + [H+, MnO2, H2C2O4]+ → 2CO2 + 2H2o + Mn2+

It is interesting to compare the performance of the two main algorithms
in this problem. Using the LP-based enumerative algorithm it turned out in
half a second that no solutions exist among the vectors shorter than 14. The
Contejean–Devie algorithm ran for 25 min to reach the same conclusion even if
the two obligatory elementary steps were taken into consideration.

Using our LP based algorithm we determined every solution not longer
than 17 units. With problems of this size the Contejean–Devie algorithm is use-
less even in its improved version. At this point we reached the limits of the LP-
based enumerative algorithm as the computational time was almost 4 h. Finally
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Table 5
Results of the decompositioning process of the permanganate/oxalic acid reaction.

Step CPU time (s) LPs solved Results

Filtering obligatory reac-
tions

124.80 673 2 reactions found

LP-based reduction with cT

in (7)
329.19 313 185 decompositions

LP-based reduction with
1 − cT in (7)

443.11 280 230 decompositions

LP-based reduction with 0
in (7)

330.00 313 189 decompositions

LP-based reduction aggre-
gated results

1102.30 906 420 decompositions

Volpert-indexing 0.5 — 110 indexable solutions

Generating decompositions
of � 14 steps

0.40 1 0 decompositions

Generating decompositions
of � 15 steps

656.56 648 11 decompositions

Generating decompositions
of � 16 steps

1096.44 8160 235 decompositions

Generating decompositions
of � 17 steps

13619.50 186515 3170 decompositions

Volpert-indexing 8.28 — 1918 indexable solutions

3170 decompositions were found. Out of them there were 1918 which proved
to be indexable. (The preprocessing algorithms also produced many decomposi-
tions.) Our results are summarized in table 5.2.1.

6. Conclusion

Four algorithms of solving linear Diophantine equations over nonnega-
tive integers were discussed and compared with respect to their usability in the
decomposition of complex chemical reactions. New results in the decomposition
of a complex reaction of high importance are presented.

The naive breadth-first-search type algorithm and Domenjoud’s algorithm
is recommended only if the size of the system is small.

The method of Contejean and Devie is applicable only if the solutions
of the system are short. For the chemical systems discussed in this paper the
improvement caused by the suggested modification proved to be significant. This
algorithm is only applicable to the generation of elementary reactions, but not to
the decomposition of overall reactions. With regard to the solution of Diophan-
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tine equations in general, it is only useful if the length of the solutions is very
small.

The LP-based enumerative algorithm, proposed in this paper, proved to be
competitive in most of the cases. For large systems with large solutions, like
those derived from the decomposition, it was the only applicable method.

Appendix A: Proof of Theorem 1

Proof. The finiteness algorithm of the algorithm follows evidently from the
same property of the original one. Only the completeness of the algorithm is to
be proved.

Let a∗ = (a∗
1 , a

∗
2 , . . . , a∗

n) a minimal solution, a � a∗, and a∗
i = ai + ri

(i = 1, . . . , n). Then

0 =
∣∣∣
∣∣∣
∑

i

a∗
i vi

∣∣∣
∣∣∣
2

=
∣∣∣
∣∣∣
∑

i

aivi

∣∣∣
∣∣∣
2
+

∣∣∣
∣∣∣
∑

i

rivi

∣∣∣
∣∣∣
2
+ 2

〈
∑

i

aivi ,
∑

i

rivi

〉

= 2
∣∣∣
∣∣∣
∑

i

aivi

∣∣∣
∣∣∣
2
+ 2

〈
∑

i

aivi ,
∑

i

rivi

〉
.

Thus

−
∣∣∣
∣∣∣
∑

i

aivi

∣∣∣
∣∣∣
2

=
〈
∑

i

aivi ,
∑

i

rivi

〉

=
∑

k

rk

〈
∑

i

aivi , vk

〉
.

The sum on the right-hand side has
∑

rk < m terms, and each term has the
form 〈∑n

i=1 aivi , vk〉. This can only be equal with the expression on the left-hand
side, if one of the terms is not greater than (1/

∑
rk) times the left-hand side.

This term satisfies condition (2). Thus we can proceed with the algorithm at any
partial solution a, if there is an a∗ minimal solution satisfying a � a∗).
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